
Improved Resource Utilization with Buffered Coscheduling

Fabrizio Petrini? and Wu-chun Feng?†

{fabrizio, feng}@lanl.gov

? Computing, Information, & Communications Division † School of Elec. & Comp. Engg.

Los Alamos National Laboratory Purdue University

Los Alamos, NM 87545 W. Lafayette, IN 49707

Abstract

We present buffered coscheduling, a new methodology to multitask parallel jobs in a message-passing

environment and to develop parallel programs that can pave the way to the efficient implementation of

a distributed operating system. Buffered coscheduling is based on three innovative techniques: commu-

nication buffering, strobing, and non-blocking communication. By leveraging these techniques, we can

perform effective optimizations based on the global status of the parallel machine rather than on the

limited knowledge available locally to each processor.

The advantages of buffered coscheduling include higher resource utilization, reduced communication

overhead, efficient implementation of flow-control strategies and fault-tolerant protocols, accurate perfor-

mance modeling, and a simplified yet still expressive parallel programming model which offloads many

resource-management tasks to the operating system. Preliminary experimental results show that buffered

coscheduling is very effective in increasing the overall performance in the presence of load imbalance and

communication-intensive workloads and is relatively insensitive to the local process scheduling strategy.

Keywords: Parallel Job Scheduling, Distributed Operating Systems, Communication Protocols.

1 Introduction

The scheduling of parallel jobs across a parallel or distributed system has long been an active area of research [8, 9].

It is a challenging problem because the performance and applicability of parallel scheduling algorithms is highly

dependent upon factors at different levels: workload, parallel programming language, operating system (OS), and

machine architecture.

Time-sharing scheduling algorithms are particularly attractive because they can provide good response time without

migration or prediction on the execution time of the parallel jobs. However, time-sharing has the drawback that
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communicating processes must be scheduled simultaneously to achieve good performance. With respect to performance,

this is a critical problem because the communication overhead and the scheduling overhead to wake up a sleeping

process dominate the communication time on most parallel machines [15].

Over the years, researchers have developed parallel scheduling algorithms that can be loosely organized into three

main classes, according to the degree of coordination between processors: explicit coscheduling, local scheduling and

implicit or dynamic coscheduling.

On the one end of the spectrum, explicit coscheduling [7] ensures that the scheduling of communicating jobs is

coordinated by constructing a static global list of the order in which jobs should be scheduled. A simultaneous

context-switch is then required across all processors. Unfortunately, this straightforward methodology is neither

scalable nor reliable. Furthermore, explicit coscheduling requires that the schedule of communicating processes be

precomputed, which complicates the coscheduling of client-server applications and requires pessimistic assumptions

about which processes communicate with one another. Finally, explicit coscheduling of parallel jobs interacts poorly

with interactive jobs and jobs performing I/O [16].

At the other end of the spectrum is local scheduling, where each processor independently schedules its processes.

While this methodology is attractive due to its ease of construction, the performance of fine-grained communication

jobs can be orders of magnitude worse than with explicit coscheduling because the scheduling is not coordinated across

processors [11].

In recent years, UC Berkeley and MIT have introduced an intermediate approach called implicit or dynamic

coscheduling [1, 6, 20]. With implicit coscheduling, each local scheduler makes independent decisions that dynamically

coordinate the scheduling actions of cooperating processes across processors. These actions are based on local events

that occur naturally within communicating applications. For example, on message arrival, the receiving processor

speculatively assumes that the sender is active and will probably send more messages in the near future. The implicit

information available for implicit coscheduling consists of two inherent events: response time and message arrival [1].

An in-depth performance analysis of coscheduling strategies can be found in [18].

Response time is the time for the response to a message request to return to the sending process. Assuming the

destination process must be scheduled for a response to be returned, a fast response indicates to the sending node

that the corresponding destination process is probably currently scheduled. Therefore, the desired action for implicit

coscheduling is to keep the sender scheduled. Conversely, if the response is not received in a timely fashion, the sending

node can infer that the destination is probably not scheduled. Thus, it is not beneficial to keep the sender scheduled.

The mechanism that achieves these desired actions is two-phase spin blocking. With two-phase spin-blocking, a

process spins for some threshold amount of time, and if the response arrives before the time expires, it continues

executing. If the response is not received within the threshold, the process voluntarily relinquishes the processor so a

competing process can be scheduled.

The other inherent event used in implicit coscheduling is message arrival, the receipt of a message from a remote

node. When a message arrives, the implication is that the corresponding remote process was recently scheduled.

Therefore, it may be beneficial to schedule, or keep scheduled, the receiving process and to increase its spin time.

The main drawbacks of dynamic and implicit coscheduling include (1) the limited programming model supported,

(2) the limitation of a localized flow-control strategy, (3) the non-trivial implementation of fault tolerance, and (4)
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the lack of a reliable performance model of the execution time of parallel jobs due to the dynamic interleaving of

several jobs. Some of the above limitations are successfully addressed in [18] with a technique called Periodic Boost.

Rather than sending an interrupt for each incoming message, the kernel periodically examines the status of the network

interface, thus reducing the overhead for communication-intensive workloads.

In contrast, we present a new methodology which exploits the positive aspects of both explicit and implicit coschedul-

ing using three innovative techniques: communication buffering, strobing, and non-blocking, one-sided communication.

By leveraging these techniques, we can perform effective optimizations based on the status of the parallel machine

rather than on the limited knowledge available locally to each processor.

The benefits of buffered coscheduling include higher resource utilization, dramatic simplification of the run-time

support, reduced communication overhead, efficient global implementation of flow-control strategies and fault-tolerant

protocols, accurate performance modeling, and a simplified yet still expressive parallel programming model.

The rest of the paper is organized as follows. Section 2 characterizes important properties which are shared by many

parallel applications and which inspired our buffered coscheduling approach. Buffered coscheduling itself is described

in Section 3, and some preliminary results are presented in Section 4. Finally, we present our conclusions in Section 5.

2 Resource Utilization of Parallel Programs

In Figure 1, we show the network utilization by running four distinct applications over a parallel machine with 256

processors [22]. In all four cases, we can identify communication holes, i.e., periods of network inactivity, in the

network. The processors are connected with an indirect interconnection network using state-of-the-art routers. Based

on these figures, there is obviously an uneven and inefficient use of system resources. These characteristics are shared

by many SPMD programs, including Accelerated Strategic Computing Initiative (ASCI) application codes such as

Sweep3D [13]. Hence, there is tremendous potential for increasing resource utilization in a parallel machine.

Another important characteristic shared by many parallel programs is their access pattern to the network. The vast

majority of parallel applications display bursty communication patterns with alternating spikes of impulsive commu-

nication with periods of inactivity [22].

Thus, there exists a significant amount of communication bandwidth which can be made available for other purposes.

3 Buffered Coscheduling

To improve the resource utilization of parallel programs, we propose to multitask parallel jobs. That is, instead of

overlapping computation with communication and I/O within a single parallel program, all the communication and I/O

which arises from a set of parallel programs can be overlapped with the computations in those programs. To implement

this multitasking, we use a buffered coscheduling approach which relies on three techniques. First, the communication

generated by each processor is buffered and performed at the end of regular intervals (or time-slices) in order to

amortize the communication and scheduling overhead. By delaying communication, we allow for the global scheduling

of the communication pattern. Second, a strobing mechanism performs a total exchange of control information at

the end of each time-slice so that massively parallel machines may move away from isolated scheduling algorithms [1]
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Figure 1: Network Utilization in Scientific Parallel Programs.

(where processors make decisions based solely on their local status and a limited view of the remote status) to more

outward-looking or global scheduling algorithms. Third, non-blocking, one-sided communication primitives decouple

communication and synchronization, thus allowing the communication pattern to be scheduled with additional degrees

of freedom.

This approach represents a significant improvement over existing work reported in the literature. It allows for the

implementation of a global scheduling policy, as done in explicit coscheduling, while maintaining the overlapping of

computation and communication provided by implicit coscheduling.

3.1 Communication Buffering

Rather than incurring communication and scheduling overhead on a per-message basis, we propose to accumulate the

communication messages generated by each processor and amortize the overhead over a set of messages. Specifically,

the cost of the system calls necessary to access the kernel data structures for communication is amortized over a set of

system calls rather than being incurred on each individual system call. This implies that buffered coscheduling can be

tolerant to the potentially high latencies that can be introduced in a kernel call or in the initialization of the network

interface card (NIC) that can reside on a slow I/O bus. In addition to amortizing communication and scheduling
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overhead, we can also implement zero-copy (or low-copy, if we desire fault-tolerant communication) communication. As

a result, our approach to communication buffering can achieve performance comparable to user-level network interfaces

(i.e., OS-bypass protocols) [3] without using specialized hardware.

3.2 Strobing

The uneven resource utilization and the periodic, bursty communication patterns generated by many parallel appli-

cations can be exploited to perform a total exchange of information and a synchronization of processors at regular

intervals with little additional cost. This provides the parallel machine with the capability of filling in communication

holes generated by parallel applications.

In order to provide the above capability, we propose a strobing mechanism to support the scheduling of a set of

parallel jobs which share a parallel machine. Let us assume that each parallel job runs on the entire set of p processors,

i.e., jobs are time-sharing the whole machine. The strobing mechanism performs an optimized total-exchange of control

information (which we call heartbeat) and triggers the downloading of any buffered packets into the network.

Figure 2 shows how computation and communication can be scheduled over a generic processor. At the beginning

of the heartbeat, t0, the kernel downloads control packets into the network for a total exchange. During the execution

of the barrier synchronization, another user process gains control of the processor; and at the end of the barrier

synchronization, the kernel schedules the pending communication, accumulated in the previous time-slice (before t0),

to be delivered in the current time-slice [t0, t2]. From the control information exchanged between t0 and t1, the

processor will know (at t1) the number of incoming packets that it is going to receive in the communication time-slice

as well as the sources of the packets and will start the downloading of outgoing packets. It is worth noting that the

potentially high overhead of the barrier synchronization is simply removed from the critical path by running another

process. Thus, we can tolerate the latency of a global exchange of information without experiencing performance

degradation.
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Figure 2: Scheduling Computation and Communication. Communication accumulated in the time-slice up to t0 is

downloaded into the network between t1 and t2 (after the barrier synchronization). δ ≡ length of a time-slice = t2− t0.

This strategy can be easily extended to deal with space-sharing where different regions run different sets of pro-
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grams [14]. In this case too, all the different regions are synchronized by the same heartbeat.

3.3 Blocking vs. Non-Blocking

One of the most limiting constraints in the implementation of time-sharing algorithms is the need to schedule simul-

taneously communicating processes. This problem is exacerbated with blocking communication, which imposes an

explicit handshake between sender and receiver.

We argue that this problem can eliminated, or at least alleviated, by slightly modifying the communication structure

of parallel jobs and replacing blocking communication with non-blocking primitives or one-sided communication.

FENCE

FENCE

put

putputput

put

b)a)

send

send

receive

receive

receive

send

CBA CBA

Figure 3: (a) Message Passing (b) One-Sided Communication.

As Figure 3 shows, the dynamics of a message-passing program can be represented as a two-dimensional graph with

processes on the horizontal axis and time on the vertical one. Arrows between processes represent communication

between a sender and a receiver. In Figure 3(a), three processes exchange messages. For the sake of convenience, let

us assume that there is no dependency between the messages (i.e., they can be sent in any order). Using a traditional,

blocking, message-passing programming style, we must define a communication schedule even if one is not required,

e.g., A sends to B, B receives from A and sends to C, C receives from B and sends to A.

With one-sided communication (or non-blocking communication primitives, in general), the actual message trans-

mission and the synchronization are decoupled, leaving many degrees of freedom to re-arrange message transmission.

In Figure 3(b), the same communication pattern is delimited by two barriers and includes the communication executed

with put primitives. The communication can be executed in any order, provided that the information is delivered at

the end of the synchronization calls. Lastly, in contrast to explicit coscheduling, communicating processes do not need

to be simultaneously scheduled to perform the communication.
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3.4 Bulk-Synchronous Parallel Programs

Using our proposed strobing and buffering mechanisms, any generic parallel program can be transformed into a Bulk-

Synchronous Parallel (BSP) one [28]. Although the buffering and strobing mechanisms alone improve parallel program

performance, transforming by themselves a parallel program into a BSP one not only can improve performance further

but also allows for accurate prediction of the execution times.

A BSP computation consists of a sequence of parallel supersteps. During a superstep, each processor can perform

a number of computation steps on values held locally at the beginning of the superstep and can issue various remote

read and write requests that are buffered and delivered at the end of the superstep. This implies that communication

is clearly separated from synchronization, i.e. it can be performed in any order, provided that the information is

delivered at the beginning of the following superstep. However, while the supersteps in the original BSP model can be

variable in length, our programming model generates computation and communication slots which are fixed in length

and are determined by the time-slice.

One important benefit of the BSP model is the ability to accurately predict the execution time requirements of

parallel algorithms and programs. This is achieved by constructing analytical formulae that are parameterized by a few

constants which capture the computation, communication, and synchronization performance of a p-processor system.

These results are based on the experimental evidence that the generic collective communication pattern generated by

a superstep called h-relation1 can be routed with predictable time [10, 24]. This implies that the maximum amount

of information sent or received by each processor during a communication time-slice can be statically determined and

enforced at run time by a global communication scheduling algorithm. For example, if the duration of the time-slice

is δ and the permeability of the network (i.e., the inverse of the aggregate network bandwidth) is g, the upper bound

hmax of information, expressed in bytes, that can be sent or received by a single processor is

hmax =
δ

g
.

Furthermore, by globally scheduling a communication pattern, as described in Section 3.2, we can derive an accurate

estimate of the communication time with simple analytical models already developed for the BSP model [24, 5, 23].

Another important benefit of the BSP model is higher resource utilization over the parallel machine, irrespective

of the computational and communication patterns. For example, a sparse communication pattern (where a single

processor receives hmax bytes) or a more dense communication pattern (where more processors share the same upper

bound) can be routed in the same communication time-slice. This means that it is possible to use spare communication

bandwidth to deliver packets generated by other parallel jobs, without detrimental effects. More generally, as with

any multiprogrammed system, multitasking a collection of bad (parallel) programs, i.e., unbalanced computation

or communication, may produce the same behavior as a single well-behaved (parallel) program. Multitasking can

provide opportunities for filling in “spare communication cycles” by merging sparse communication patterns together

to produce a denser communication pattern.

The BSP model is also beneficial for fault tolerance2 Fault tolerance can be enhanced by exploiting the synchro-

nization points at the end of a time-slice: we can take a snapshot of the whole machine and checkpoint its status.

1h denotes the maximum amount of information sent or received by any process during the superstep.

2This is of vital importance to the large ASCI supercomputers where the MTBF can be on the order of hours.
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4 Experimental Results

Our preliminary experimental results include a working implementation of a representative subset of MPI-2 on a

detailed simulation model [25]. The simulation environment includes a standard version of MPI-2 and a multitasking

one, that implements the main features of buffered coscheduling. Because the design space of our problem is too large

to explore exhaustively, we fix the workload and system characteristics.

4.1 Characteristics of the Synthetic Workloads

The workloads used consist of a collection of single-program multiple-data (SPMD) parallel jobs, similar to those

reported in [6], which alternate phases of purely local computation with interprocess communication. A parallel job

generated by one of such programs consists of a group of P processes and each process is mapped on a processor

throughout the execution. Processes compute locally for a time uniformly selected in the interval (g − v

2
, g + v

2
).

By adjusting g we model parallel programs with different computational granularities and by varying v we change

the degree of load-imbalance across processors. The communication phase consists of an optional sequence of com-

munication events terminated by a closing barrier. We consider three communication patterns: Barrier, News and

Transpose. Barrier consists of only the closing barrier and thus contains no additional dependencies. This workload

can be used to analyze how buffered coscheduling responds to load imbalance. The other two patterns consist of a

sequence of remote writes. The communication pattern generated by News is based on a stencil with a grid where

each process exchange information with its four neighbors. This workload represents those applications that perform

a domain decomposition of the data set and limit their communication pattern to a fixed set of partners. Transpose

is a communication-intensive workload that emulates the communication pattern generated by the FFT transpose

algorithm [12], where each process accesses data on all other processes.

We consider three parallel jobs with the same computation granularity, load-imbalance and communication pattern

arriving at the same time in the system. The number of communication/computation iterations is scaled so that each

job runs for approximately 10 seconds in a dedicated environment. The system consists of 32 processors and each job

requires 32 processes (i.e., jobs are only time-shared).

4.2 The Simulation Model

The simulation tool that we used in the experimental evaluation is called SMART (Simulator of Massive ARchitectures

and Topologies) [21], a flexible tool designed to model the fundamental characteristics of a parallel architecture. The

current version of SMART is based on the x86 instruction set. The architectural design of the processing nodes

is inspired by the Pentium II family of processors [27]. In particular, it models a two-level cache hierarchy with a

write-back L1 policy and non-blocking caches. We assume a processor speed of 500 MHz. In the experiments we will

consider two networks with 32 processing nodes, representative of two different architectural solutions.

The first network is a 5-dimensional cube topology with performance characteristics similar to those of Myrinet

routing and network cards [4]. This network features a one-way data rate of about 1 Gbit/s and a base network latency

of few µs.
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Figure 4: Each process of a parallel job executes on a separate processor and alternates between computation and

communication. Processes compute for a mean time g before executing the closing barrier of the communication phase.

The variation in computation across processes is uniformly distributed in (0, v).

The second network is based on 32-port, 100 Mbit/s switch, a popular solution due its attractive performance/price

ratio. An example are the Intel Express switches3. This network displays a latency of few tens of µs.

The simulator models at register level the congestion inside the network, at the network interface and the routing

and flow control protocols. The run-time support running on this simulated platform includes a standard version of a

significant subset of MPI-2 that runs each job in dedicated mode and a multitasking version of the same subset that

performs buffered coscheduling as outlined in section 3. The standard version uses an aggressive user-level messaging

system [2, 17, 19, 26] which introduces very little overhead and exposes the full communication capability provided by

the hardware.

4.3 Sensitivity Analysis

Figures 5 and 6 illustrate the communication and computation characteristics of our synthetic benchmarks as a function

of the communication pattern, granularity, load imbalance, and time-slice duration. Each bar shows the percentage of

time spent in one of the following states (averaged over all processors): computing, context-switching and idling.

For each communication pattern, in the Myrinet-based interconnection network, we consider time-slices of 500 µs,

3See http://www.intel.com/network/products/express switches.htm.
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Figure 5: Execution characteristics as a function of computation granularity, load imbalance, time-slice length

for the Myrinet-based interconnection network. A black square under a bar highlights the configurations where

the multitasking approach gets better resource utilization than the standard approach, and a circle indicates the

configurations where the performance loss is within 5%.
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Figure 6: Execution characteristics as a function of computation granularity, load imbalance, time-slice length for the

switch-based network. A black square under a bar highlights the configurations where the multitasking approach gets

better resource utilization than the standard approach, and a circle indicates the configurations where the performance

loss is within 5%.

11



1 and 2 ms. Due to larger communication overhead and lower bandwidth, in the switch-based network the time-slices

are 2, 4 and 8 ms. In both cases the context switch penalty is 25 µs. For each of these alternatives, we considers

six groups of three bars. Each group has the same computation granularity, and the load imbalance is increased as a

function of the granularity itself. We consider three cases: v = 0 (i.e. no variance), v = g (in this case the variance is

equal to the computational granularity) and v = 2g (high degree of imbalance).

Figures 5 (l)-(n) and 6 (l)-(n) show the breakdown for the Barrier, News and Transpose workloads when they are

run in dedicated mode on the MPI-2 run-time support. For Figures 5 (a)-(i) and 6 (a)-(i) a black square under a

bar highlights the configurations where buffered coscheduling gets better resource utilization than MPI-2 user-level

communication, and a circle indicates the configurations where the performance loss of buffered coscheduling is within

5%.

By examining the breakdowns of each bar, we can see several important trends. As the load imbalance of the

program increases (i.e., moving to the right within each group of three bars with the same computational granularity),

the idle time increases. The time-slice length is a critical parameter in determining overall system performance. A short

time-slice can achieve very good load balancing even in the presence of highly unbalanced jobs. The downside is that

it amplifies the context-switch latency. On the other hand, a long time-slice can virtually hide all the context-switch

latency but cannot reduce the load imbalance, in particular when there are fine-grained computations.

In Figures 5 (a), (d) and (g), we see that with a Myrinet-based network, using a relatively small time-slice, our

multitasking environment produces higher processor utilization than when a single job runs in a dedicated environment

in more than 50% of the cases. For most of the other cases (i.e., v = 0 or perfectly balanced jobs), running a single job

results in marginally better performance because buffered coscheduling must “pay” the context-switch penalty without

improving the load balance because the load is already balanced. On the other hand, in the presence of load imbalance,

job multitasking can smooth the differences in load, resulting in both higher processor and network utilization. A

less powerful interconnection network amplifies the positive characteristics of buffered coscheduling. In Figures 6 (a),

(d) and (g), we see that with the switch-based interconnection network, buffered coscheduling outperforms the basic

approach in 16 configurations out of 18 with Barrier, 13 out 18 with News and 10 out 18 with Transpose. In this

last case, the performance of buffered coscheduling can be improved by increasing the time-slice. In fact, when the

time-slice is 4 ms, the number of improved configurations is 15 out of 18.

As a final note, our preliminary experimental results do not account for the effects of the memory hierarchy on

the working sets of different jobs. As a consequence, buffered coscheduling requires a larger main memory in order to

avoid memory swapping. We consider this as the main limitation of our approach.

4.4 Job Scheduling

In the experiments shown above we considered three jobs of the same kind (same computational grain size, variance

and communication pattern). We now extend our analysis to workloads of multiple jobs with different communication

patterns and computational granularity. We consider five workloads: the first two with three jobs, and the last three

with four jobs. These mixed workloads are generated by using the Barrier and Transpose communication patterns.

The notation BAR(gb,vb) indicates Barrier with a computational grain size of gb ms and variance of vb ms and
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TRA(gt,vt) Transpose with a computational grain size of gt ms and variance of vt ms. The workloads are shown in

Table 1.

The number of iterations for each job is adjusted so that the total completion time for each workload in a dedicated

environment is 100 seconds and so that each job takes approximately the same time to run, e.g., each of the three jobs

in workloads 1 and 2 execute in 33.3 seconds, respectively, and each of the four jobs in workloads 3, 4, and 5 execute

in 25 seconds, respectively.

For each network, we also consider different computation granularities. In the Myrinet-based network we set (gb,vb)

to (50 ms, 50 ms) and (gt, vt) to (1 ms, 2 ms), while in the switch-based network (gb,vb) is (100 ms, 100 ms) and

(gt,vt) is (5 ms, 10 ms). In both cases, the first job is relatively computation intensive with some load imbalance while

the second job is communication intensive with high load imbalance.

Workload Jobs in Workload Communication

1 BAR(gb,vb), TRA(gt,vt), TRA(gt,vt) (low,hi,hi)

2 BAR(gb,vb), BAR(gb,vb), TRA(gt,vt) (low,low,hi)

3 BAR(gb,vb), TRA(gt,vt), TRA(gt,vt), TRA(gt,vt) (low,hi,hi,hi)

4 BAR(gb,vb), BAR(gb,vb), TRA(gt,vt), TRA(gt,vt) (low,low,hi,hi)

5 BAR(gb,vb), BAR(gb,vb), BAR(gb,vb), TRA(gt,vt) (low,low,low,hi)

Table 1: Mixed workloads with three and four jobs. BAR(gb,vb) identifies a Barrier with a grain size of gb ms and a

variance of vb ms. TRA(gt,vt) is a Transpose with gt ms and vt ms. The first column indicates the job id, the second

column shows the workload composition and the third column gives a quick overview of the communication intensities

of each job in the workload. low and hi indicate, respectively, low and high communication intensity.

To determine the impact of local process scheduling, we also considered six scheduling algorithms. The first two

use local information only. Round Robin (ROUND) is a simple local scheduler based on a FIFO ready queue. Stride

scheduling (STRIDE) is a credit-based algorithm that tries to give fair processor allocation; resources (the processors

in our case) are allocated to competing processes in proportion of the number of tickets they hold [29].

The remaining four scheduling algorithm use the global knowledge provided by buffered coscheduling through the

total exchange of information that takes place during each time-slice. Blocked Scheduling (BLOCKED) gives priority to

the job with the maximum number of processes blocked on a synchronization primitive (e.g., a barrier synchronization

or a fence). The rationale is that the active processes in this job are potentially delaying all the remaining processes, so

they should receive a preferential treatment. Time-slice Scheduling (SLICE) applies the same credit-based algorithm

of Stride scheduling at the job level rather than at process level. Each job is given a certain amount of tickets and the

local scheduling decision is determined by the global state of the jobs. Fair Blocked Scheduling (F BLOCK) tries to

improve the fairness of Blocked Scheduling by periodically boosting the priority of the jobs at the beginning of each

time-slice. For example, let us assume that the number of jobs running in the system is jobs and that the time-slice

id is time id. At the beginning of the time-slice time id, the process belonging to the job job id

job id = time id MOD jobs,
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sees its priority boosted. This guarantees that each job/process has a fixed slot assigned to it at regular intervals. The

same scheduling strategy can be used to extend the Time-slice scheduling and obtain the Fair Time-slice Scheduling

(F SLICE). The fair versions of the algorithms can be used to deliver quality of service (QoS) in time-critical or

multimedia applications.

Myrinet Workloads

1 2 3 4 5

ROUND 78.5 89.3 68.7 74.4 79.8

STRIDE 74.1 77.1 65.2 69.8 77.9

BLOCK 75.4 79.7 64.7 65.9 81.2

SLICE 74.0 77.2 63.8 70.6 75.3

F BLOCK 75.8 78.8 66.9 66.9 74.8

F SLICE 74.2 78.5 66.6 71.7 75.0

Table 2: Execution times, expressed in seconds, of the workloads on the Myrinet-based interconnection network,

using different scheduling strategies.

Switch Workloads

1 2 3 4 5

ROUND 89.5 79.4 86.6 74.0 73.8

STRIDE 87.0 74.5 85.3 68.4 69.4

BLOCK 87.1 75.4 68.1 68.1 76.3

SLICE 87.1 69.9 70.8 67.6 70.7

F BLOCK 89.3 77.1 70.5 73.2 68.2

F SLICE 89.4 78.3 67.3 69.1 69.7

Table 3: Execution times, expressed in seconds, of the workloads on the switch-like interconnection network, using

different scheduling strategies.

The preliminary experimental results reported in Tables 2 and 3 compare the scheduling algorithms using the

workloads shown in Table 1. From these results we can see that buffered coscheduling is relatively insensitive to the

scheduling policy. This implies that buffered coscheduling works well across all classes of applications regardless of the

scheduling policy.

Tables 2 and 3 also show that the global execution time is less than 100 seconds in all cases. This implies that

buffered coscheduling can significantly improve the resource (processor) utilization while also improving overall system

throughput. This is in stark contrast to [18] where all the optimized coscheduling algorithms produce (i.e., tradeoff)

reduced system throughput in order to get better resource utilization and response time.

For example in Table 2, we see that with workload 3, the most communication intensive, the completion time is

35% lower, on average. More jobs give more opportunities to globally optimize the resource (as long as they do not
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require extra paging). Though there is not a scheduling algorithm that clearly outperforms all the others, we can see

that Round Robin lags behind in most cases. The best performance is usually provided by Blocked and Time-slice

scheduling. Surprisingly, Stride scheduling also provides comparable performance using information available locally.

The fair versions of Blocked and Time-slice scheduling are in the same performance range of the corresponding basic

algorithms.

5 Conclusion and Future Work

In this paper we have presented buffered coscheduling, a new methodology to multitask parallel jobs on a parallel

computer. The methodology addresses the main limitation of explicit coscheduling — the high latency needed to

perform a global context switch — while keeping the main advantage of dynamic coscheduling — the possibility of

overlapping computation, communication and I/O of different jobs. Also, it provides a simple framework to increase

the resource utilization, simplify the design of the run time support, increase the faults tolerance and perform effective

global optimizations.

We initially addressed the complexity of a huge design space using three families of syntethic workloads and con-

sidering two distinct interconnection networks. The preliminary experimental results reported in this paper show that

buffered coscheduling can provide better resource utilization in the vast majority of cases, in particular in the presence

of load imbalance and communication-intensive jobs.

We plan to extend these preliminary results by considering the effects of the memory hierarchy with real applications

rather than synthetic workloads and to implement in a Linux cluster a multitasking version of MPI-2.
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